Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo.

Bibliographic Collection: 
MOCA Reference, APE
Publication Type: Journal Article
Authors: Broadhurst, C L; Cunnane, S C; Crawford, M A
Year of Publication: 1998
Journal: Br J Nutr
Volume: 79
Issue: 1
Pagination: 3-21
Date Published: 1998 Jan
Publication Language: eng
ISSN: 0007-1145
Keywords: Africa, Eastern, Animals, Biological Evolution, Brain, Diet, Fishes, Hominidae, Humans, Nutritional Physiological Phenomena, Shellfish
Abstract:

An abundant, balanced dietary intake of long-chain polyunsaturated fatty acids is an absolute requirement for sustaining the very rapid expansion of the hominid cerebral cortex during the last one to two million years. The brain contains 600 g lipid/kg, with a long-chain polyunsaturated fatty acid profile containing approximately equal proportions of arachidonic acid and docosahexaenoic acid. Long-chain polyunsaturated fatty acid deficiency at any stage of fetal and/or infant development can result in irreversible failure to accomplish specific components of brain growth. For the past fifteen million years, the East African Rift Valley has been a unique geological environment which contains many enormous freshwater lakes. Paleoanthropological evidence clearly indicates that hominids evolved in East Africa, and that early Homo inhabited the Rift Valley lake shores. Although earlier hominid species migrated to Eurasia, modern Homo sapiens is believed to have originated in Africa between 100 and 200 thousand years ago, and subsequently migrated throughout the world. A shift in the hominid resource base towards more high-quality foods occurred approximately two million years ago; this was accompanied by an increase in relative brain size and a shift towards modern patterns of fetal and infant development. There is evidence for both meat and fish scavenging, although sophisticated tool industries and organized hunting had not yet developed. The earliest occurrences of modern H. sapiens and sophisticated tool technology are associated with aquatic resource bases. Tropical freshwater fish and shellfish have long-chain polyunsaturated lipid ratios more similar to that of the human brain than any other food source known. Consistent consumption of lacustrine foods could have provided a means of initiating and sustaining cerebral cortex growth without an attendant increase in body mass. A modest intake of fish and shellfish (6-12% total dietary energy intake) can provide more arachidonic acid and especially more docosahexaenoic acid than most diets contain today. Hence, 'brain-specific' nutrition had and still has significant potential to affect hominid brain evolution.

Alternate Journal: Br. J. Nutr.
Related MOCA Topics: