Variability and sexual dimorphism in canine size of Australopithecus and extant hominoids
Among extant hominoids degrees of sexual dimorphism and combined-sex coefficients of variation of canine teeth dimensions are highly correlated. Based on this relationship and coefficients of variation of four species of the genus Australopithecus, we predict degrees of canine dimorphism for these extinct hominids. The estimates show that A. afarensis is as dimorphic as the pygmy chimpanzee, A. boisei slightly less dimorphic than the pygmy chimpanzee, A. robustus slightly more dimorphic than the lar gibbon, while A. africanus overiaps with the lar gibbon as well as a modern human sample. These estimates represent degrees of canine dimorphism substantially lower than results based upon prior sexing of individual specimens. The relationship between canine dimorphism and body weight dimorphism is also analyzed. All four species of Australopithecus are considerably less dimorphic in canine size for their body weight dimorphism than expected. This dissociation of canine size dimorphism and body weight dimorphism is shared with modern humans, and thus represents a unique hominid trait. We interpret the moderate to strong body weight dimorphism in australopithecines as the result of intra- and intersexual selection typical of a polygynous mating structure, while the rather mild canine dimorphism is interpreted in terms of the “developmental crowding” model for reduction in canine size.