Archaic Adaptive Introgression

Certainty Style Key
Hover over keys for definitions:
True   Likely   Speculative
Human Uniqueness Compared to "Great Apes": 
Likely Difference
Human Universality: 
Individual Universal (All Individuals Everywhere)
MOCA Domain: 
MOCA Topic Authors: 

     An interesting emerging feature of human evolution is the presence and persistence of DNA with non-modern human origins. Prior to the dispersal of the first modern humans from Africa, the precursors to other archaic human groups, namely Neanderthals and Denisovans, migrated and settled across Eurasia. Preceding modern humans by at least a few hundred thousand years, these groups diverged genetically and phenotypically from out last common ancestor, in part due to natural selection imposed by their novel environments. As modern humans emerged from Africa, they overlapped spatially and temporally with these divergent archaic groups. Modern DNA sequencing has revealed a number of regions of the modern human genome that appear to have been introgressed from limited number of human-archaic (i.e., Neanderthal) matings. Although much of the introgressed DNA appears to have undergone negative selection, a few notable regions appear to have been positively selected. These regions include gene involved in immunity, hair and skin pigmentation, freckling, metabolism and high altitude resistance. The positive selection of some introgressed regions suggest that as modern humans migrated from Africa and eventually replaced the archaic groups, sporadic interspecific breeding events may have allowed modern humans to take advantage of the evolutionary history of these groups and more rapidly adapt to their new environments. There is considerable debate about how formative these events were for the emergence of our species, but for at least some human populations they may have been essential for survival.
     At current it is unclear how prevalent instances of archaic adaptive introgression are across great apes as the genetic and demographic studies have not been performed. It may be reasonable to presuppose that, among great apes, this evolutionary process is a uniquely human feature stemming from the unusual successive global migrations to diverse environments made by modern humans and their archaic sister species. The construction of the hybrid zones and successive backcrossing required to support archaic adaptive introgression appears to be generally rare in ecology, although it is also an understudied phenomenon.

Timing

Timing of appearance of the difference in the Hominin Lineage as a defined date or a lineage separation event. The point in time associated with lineage separation events may change in the future as the scientific community agrees upon better time estimates. Lineage separation events are defined in 2017 as:

  • the Last Common Ancestor (LCA) of humans and old world monkeys was 25,000 - 30,000 thousand (25 - 30 million) years ago
  • the Last Common Ancestor (LCA) of humans and chimpanzees was 6,000 - 8,000 thousand (6 - 8 million) years ago
  • the emergence of the genus Homo was 2,000 thousand (2 million) years ago
  • the Last Common Ancestor (LCA) of humans and neanderthals was 500 thousand years ago
  • the common ancestor of modern humans was 100 - 300 thousand years ago

Possible Appearance: 
600,000 thousand years ago
Probable Appearance: 
300 thousand years ago
Definite Appearance: 
100 thousand years ago
Background Information: 

Adaptive Introgressed Regions

Gene/Region containing            Function                          Likely Source              Presence in                      Evidence         Citations
Introgressed haplotype                                                                                          Modern Populations                                               

HLA-A, HLA-B, HLA-C              Immune Response          Neanderthal                Europeans, East               Likely               1
                                                                                           and Denisovan            Asians, Melanesians

HLA-DPB1                                 Immune Response          Neanderthal                 Europeans                       Mixed                2,3

STAT2 (Haplotype N)                 Pathogen Defense          Neanderthal                 Non-Africans                    Likely                4

STAT2 (Haplotype D)                 Pathogen Defense          Denisovan                    Melanesians                    Speculative       4

OAS1                                         Viral Immune Response  Denisovan (or               Melanesians                    Mixed                5,6,7
                                                                                          unknown group)

OAS gene cluster                      Viral Immune Response  Neanderthal                 Non-Africans                   Speculative        6,7

HYAL2                                       Cellular Response to       Neanderthal                 East Asians                     Strong                8,9,10,11
                                                  UV Radiation

BNC2                                        Skin Pigmentation and    Neanderthal                  Europeans                      Strong                5,12,13,14
                                                  Freckling

POU2F3                                    Keratinocyte                    Neanderthal                  East Asians                    Strong                 5,12
                                                  Differentiation

TMEM136                                 Unknown                         Neanderthal                   East Asians                   Strong                  5,12

MC1R                                       Melanocyte Function;      Neanderthal                   Non-Africans                 Mixed                  8,15
                                                 Red-hair, freckles and
                                                 fair skin

SLC16A11                               Lipid Metabolism              Neanderthal                  Native Americans          Likely                   16

SLC16A13                               Lipid Metabolism              Neanderthal                  Native Americans          Likely                   16

DMD                                        Skeletal Muscle                Neanderthal                  Non-Africans                 Speculative          17,18

EPAS1                                     Response to High             Denisovan                     East Asians                   Strong                  19,20
                                                Altitude Hypoxia                                                     (perhaps Tibetans only)
Multiple regions                      Multiple genes                   Neanderthal                  Europeans                     Likely                    21
identified by a                         involved in
genome-wide scan                 integumentary system

Multiple regions                      Multiple genes                   Neanderthal                   Europeans and             Likely                    12
identified by a                         involved in lipid                                                        East Asians
genome-wide scan                 catabolism

Multiple regions                      Multiple genes                   Neanderthal                   Europeans and             Likely                     5
identified by a                         involvedin keratin                                                     East Asians
genome-wide scan                 filament, sugar metabolism,
                                                musclecontraction and
                                                oocytemeiosis

Multiple regions                      Not characterized              Neanderthal                   Europeans, East           Speculative            22, 23
identified by a                                                                    and Denisovan              Asians, Melanesians
genome-wide scan

Table adapted from Racimo et al 2015.

Strong Evidence = Multiple published reports supporting AAI
Likely Evidence = A single published report supporting AAI
Speculative Evidence = Proposed AAI but no published statistical test
Mixed Evidence = Inconsistent published support for AAI
 

The Human Difference: 

 Because of the unique way in which humans and their archaic sister species successively spread across the globe at time intervals that allowed local adaptation, they may be the only great ape to have receive adaptive introgressed DNA. It is unclear if the dispersion and migration of other great apes could have allowed for such a process.

Universality in Human Populations: 

 Adaptive Introgression is likely present in most to all human populations, although any one introgressive event may be present in only a subset of populations.

Possible Selection Processes Responsible for the Difference: 

 The introgressed DNA was selected via natural selection. Only a few beneficial segments were retained while as a majority of introgressed DNA was selected against.

Occurrence in Other Animals: 

 This type of DNA transfer among sister species appears generally rare in ecology, although it is understudied. There are numerous hybrid zones and interbredding between sister species, but the type of long separation and replacement with introgression has only been observed in a few distant species, namely, salamanders and mice. Archaic adaptive introgression has also been observed in some plant species.

Related MOCA Topics
Related Topics (hover over title for reason):

References

  1. Neanderthal introgression reintroduced thousands of ancestral alleles lost in the out of Africa bottleneck, Capra, John A., and Simonti Corinne N. , American Society of Human Genetics, (2017)
  2. Variation and functional impact of Neanderthal ancestry in Western Asia, Taskent, Recep Ozgur, Alioglu Duha, Fer Evrim, Donertas Handan Melike, Somel Mehmet, and Gokcumen Omer , Genome Biology and Evolution, 2017/10/13, p.evx216 - evx216, (2017)
  3. Ancient DNA and human history, Slatkin, Montgomery, and Racimo Fernando , Proceedings of the National Academy of Sciences, 2016/06/06, (2016)
  4. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals., Vernot, Benjamin, Tucci Serena, Kelso Janet, Schraiber Joshua G., Wolf Aaron B., Gittelman Rachel M., Dannemann Michael, Grote Steffi, McCoy Rajiv C., Norton Heather, et al. , Science, 2016 Apr 8, Volume 352, Issue 6282, p.235-9, (2016)
  5. Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations, Quach, Hélène, Rotival Maxime, Pothlichet Julien, Loh Yong-Hwee Eddie, Dannemann Michael, Zidane Nora, Laval Guillaume, Patin Etienne, Harmant Christine, Lopez Marie, et al. , Cell, 10/2016, Volume 167, Issue 3, p.643 - 656.e17, (2016)
  6. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes., Deschamps, Matthieu, Laval Guillaume, Fagny Maud, Itan Yuval, Abel Laurent, Casanova Jean-Laurent, Patin Etienne, and Quintana-Murci Lluis , Am J Hum Genet, 2016 Jan 7, Volume 98, Issue 1, p.5-21, (2016)
  7. Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition., Houldcroft, Charlotte J., and Underdown Simon J. , Am J Phys Anthropol, 2016 Apr 10, (2016)
  8. Signatures of archaic adaptive introgression in present-day human populations, Racimo, Fernando, Marnetto Davide, and Huerta-Sánchez Emilia , Molecular Biology and Evolution, 2016/10/18, Volume 33, Issue 11, (2016)
  9. The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans., Sankararaman, Sriram, Mallick Swapan, Patterson Nick, and Reich David , Curr Biol, 2016 May 9, Volume 26, Issue 9, p.1241-7, (2016)
  10. The Genetic Cost of Neanderthal Introgression., Harris, Kelley, and Nielsen Rasmus , Genetics, 2016/06/06, Volume 203, Issue 2, p.881 - 891, (2016)
  11. The phenotypic legacy of admixture between modern humans and Neandertals., Simonti, Corinne N., Vernot Benjamin, Bastarache Lisa, Bottinger Erwin, Carrell David S., Chisholm Rex L., Crosslin David R., Hebbring Scott J., Jarvik Gail P., Kullo Iftikhar J., et al. , Science, 2016 Feb 12, Volume 351, Issue 6274, p.737-41, (2016)
  12. The Strength of Selection against Neanderthal Introgression, Juric, Ivan, Aeschbacher Simon, and Coop Graham , PLoS Genet, 11/2016, Volume 12, p.1-25, (2016)
  13. Transmission Between Archaic and Modern Human Ancestors During the Evolution of the Oncogenic Human Papillomavirus 16, Pimenoff, Ville N., de Oliveira Cristina Mendes, and Bravo Ignacio G. , Molecular Biology and Evolution, 2016/10/07, Volume 33, Issue 11, (2016)
  14. Complex history of admixture between modern humans and Neandertals., Vernot, Benjamin, and Akey Joshua M. , Am J Hum Genet, 2015 Mar 5, Volume 96, Issue 3, p.448-53, (2015)
  15. Denisovan Ancestry in East Eurasian and Native American Populations, Qin, P., and Stoneking M. , Mol Biol Evol, 06/2015, Volume 32, Issue 10, p.2665-2674, (2015)
  16. Evidence for archaic adaptive introgression in humans., Racimo, Fernando, Sankararaman Sriram, Nielsen Rasmus, and Huerta-Sánchez Emilia , Nat Rev Genet, 2015 Jun, Volume 16, Issue 6, p.359-71, (2015)
  17. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations., Kim, Bernard Y., and Lohmueller Kirk E. , Am J Hum Genet, 2015 Mar 5, Volume 96, Issue 3, p.454-61, (2015)
  18. The diverse origins of the human gene pool., Pääbo, Svante , Nat Rev Genet, 2015 Jun, Volume 16, Issue 6, p.313-4, (2015)
  19. A novel family of human leukocyte antigen class II receptors may have its origin in archaic human species., Temme, Sebastian, Zacharias Martin, Neumann Jürgen, Wohlfromm Sebastian, König Angelika, Temme Nadine, Springer Sebastian, Trowsdale John, and Koch Norbert , J Biol Chem, 2014 Jan 10, Volume 289, Issue 2, p.639-53, (2014)
  20. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA., Huerta-Sánchez, Emilia, Jin Xin, Bianba Zhuoma, Peter Benjamin M., Vinckenbosch Nicolas, Liang Yu, Yi Xin, He Mingze, Somel Mehmet, Ni Peixiang, et al. , Nature, 2014 Aug 14, Volume 512, Issue 7513, p.194-7, (2014)
  21. Genomic structure in Europeans dating back at least 36,200 years, Seguin-Orlando, Andaine, Korneliussen Thorfinn S., Sikora Martin, Malaspinas Anna-Sapfo, Manica Andrea, Moltke Ida, Albrechtsen Anders, Ko Amy, Margaryan Ashot, Moiseyev Vyacheslav, et al. , Science, Volume 346, p.1113–1118, (2014)
  22. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans., Khrameeva, Ekaterina E., Bozek Katarzyna, He Liu, Yan Zheng, Jiang Xi, Wei Yuning, Tang Kun, Gelfand Mikhail S., Prüfer Kay, Kelso Janet, et al. , Nat Commun, 2014, Volume 5, p.3584, (2014)
  23. Neanderthal introgression at chromosome 3p21.31 was under positive natural selection in East Asians., Ding, Qiliang, Hu Ya, Xu Shuhua, Wang Jiucun, and Jin Li , Mol Biol Evol, 2014 Mar, Volume 31, Issue 3, p.683-95, (2014)
  24. Neanderthal origin of the haplotypes carrying the functional variant Val92Met in the MC1R in modern humans, Ding, Q., Hu Y., Xu S., Wang C., Li H., Zhang R., Yan S., Wang J., and Jin L. , Mol Biol Evol, 06/2014, (2014)
  25. Non-Neanderthal origin of the HLA-DPB1*0401, Ding, Q., Hu Y., and Jin L. , J. Biol. Chem. , Volume 289, Issue 14, (2014)
  26. Resurrecting surviving Neandertal lineages from modern human genomes., Vernot, Benjamin, and Akey Joshua M. , Science, 2014 Feb 28, Volume 343, Issue 6174, p.1017-21, (2014)
  27. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico., Williams, Amy L., Jacobs Suzanne B. R., Moreno-Macías Hortensia, Huerta-Chagoya Alicia, Churchhouse Claire, Márquez-Luna Carla, García-Ortíz Humberto, Gómez-Vázquez María José, Burtt Noël P., Aguilar-Salinas Carlos A., et al. , Nature, 2014 Feb 6, Volume 506, Issue 7486, p.97-101, (2014)
  28. The complete genome sequence of a Neanderthal from the Altai Mountains., Prüfer, Kay, Racimo Fernando, Patterson Nick, Jay Flora, Sankararaman Sriram, Sawyer Susanna, Heinze Anja, Renaud Gabriel, Sudmant Peter H., de Filippo Cesare, et al. , Nature, 2014 Jan 2, Volume 505, Issue 7481, p.43-9, (2014)
  29. The genomic landscape of Neanderthal ancestry in present-day humans., Sankararaman, Sriram, Mallick Swapan, Dannemann Michael, Prüfer Kay, Kelso Janet, Pääbo Svante, Patterson Nick, and Reich David , Nature, 2014 Mar 20, Volume 507, Issue 7492, p.354-7, (2014)
  30. Comprehensive candidate gene study highlights UGT1A and BNC2 as new genes determining continuous skin color variation in Europeans., Jacobs, L. C., Wollstein A., Lao O., Hofman A., Klaver C. C., Uitterlinden A. G., Nijsten T., Kayser M., and Liu F. , Hum. Genet., 02/2013, Volume 132, Issue 2, p.147-58, (2013)
  31. Neandertal origin of genetic variation at the cluster of OAS immunity genes, Mendez, F. L., Watkins J. C., and Hammer M. F. , Mol. Bio. Evol. , Volume 30, p.798-801, (2013)
  32. A haplotype at STAT2 Introgressed from neanderthals and serves as a candidate of positive selection in Papua New Guinea., Mendez, Fernando L., Watkins Joseph C., and Hammer Michael F. , Am J Hum Genet, 2012 Aug 10, Volume 91, Issue 2, p.265-74, (2012)
  33. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations, Mendez, F. L., Watkins J. C., and Hammer M. F. , Mol. Biol. Evol. , (2012)
  34. An X-linked haplotype of Neandertal origin is present among all non-African populations, Yotova, Vania, Lefebvre Jean-Francois, Moreau Claudia, Gbeha Elias, Hovhannesyan Kristine, Bourgeois Stephane, Bédarida Sandra, Azevedo Luisa, Amorim Antonio, Sarkisian Tamara, et al. , Molecular Biology and Evolution, (2011)
  35. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania., Reich, David, Patterson Nick, Kircher Martin, Delfin Frederick, Nandineni Madhusudan R., Pugach Irina, Ko Albert Min- Shan, Ko Ying-Chin, Jinam Timothy A., Phipps Maude E., et al. , Am J Hum Genet, 2011 Oct 7, Volume 89, Issue 4, p.516-28, (2011)
  36. The shaping of modern human immune systems by multiregional admixture with archaic humans, Abi-Rached, L., Jobin M. J., Kulkarni S., McWhinnie A., Dalva K., Gragert L., Babrzadeh F., Gharizadeh B., Luo M., Plummer F. A., et al. , Science, Volume 334, p.89-94, (2011)
  37. A composite of multiple signals distinguishes causal variants in regions of positive selection., Grossman, Sharon R., Shlyakhter Ilya, Shylakhter Ilya, Karlsson Elinor K., Byrne Elizabeth H., Morales Shannon, Frieden Gabriel, Hostetter Elizabeth, Angelino Elaine, Garber Manuel, et al. , Science, 2010 Feb 12, Volume 327, Issue 5967, p.883-6, (2010)
  38. Sequencing of 50 human exomes reveals adaptation to high altitude., Yi, Xin, Liang Yu, Huerta-Sánchez Emilia, Jin Xin, Cuo Zha Xi Ping, Pool John E., Xu Xun, Jiang Hui, Vinckenbosch Nicolas, Korneliussen Thorfinn Sand, et al. , Science, 2010 Jul 2, Volume 329, Issue 5987, p.75-8, (2010)
  39. Web-based, participant-driven studies yield novel genetic associations for common traits, Eriksson, N., Macpherson J. M., Tung J. Y., Hon L. S., Naughton B., Saxonov S., Avey L., Wojcicki A., Pe'er I., and Mountain J. , PLoS Genet., 06/2010, Volume 6, Issue 6, p.e1000993, (2010)
  40. Adaptation by introgression., Arnold, Michael L., and Martin Noland H. , J Biol, 2009, Volume 8, Issue 9, p.82, (2009)
  41. A map of recent positive selection in the human genome, Voight, B. F., Kudaravalli S., Wen X., and Pritchard J. K. , PLoS Biol. , Volume 4, Issue 3, (2006)
  42. Haplotypes in the dystrophin DNA segment point to a mosaic origin of modern human diversity., Zietkiewicz, Ewa, Yotova Vania, Gehl Dominik, Wambach Tina, Arrieta Isabel, Batzer Mark, Cole David E. C., Hechtman Peter, Kaplan Feige, Modiano David, et al. , Am J Hum Genet, 2003 Nov, Volume 73, Issue 5, p.994-1015, (2003)
  43. Detecting recent positive selection in the human genome from haplotype structure, Sabeti, P. C., Reich D. E., Higgins J. M., Levine H. Z. P., Richter D.J., Schaffner S. F., Gabriel S. B., Platko J. V., Patterson N. J., McDonald G. J., et al. , Nature, Volume 419, p.832-837, (2002)